

Systèmes de Référence Temps-Espace

Réseaux de fibres optiques terrestres ou sous-marins : **Applications géodésiques**

P.-E. Pottie

- Introduction chronometric levelling
- Fiber link technology
- Optical metrology networks
- Demonstration of applications for geodesy
- Submarine links
- **Towards a research infrastructure**
- Outlook

Systèmes de Référence Temps-Espace

Chronometric levelling

- (which depends on the mass/energy distribution).
- potential at high spatial resolution
- using clock comparisons

Vermeer, M. (1983). Chronometric Levelling. Finnish Geodetic Institute, Helsinki. Bjerhammar, A. (1985). Bull. Geodesique 59.3, pp. 207–220. doi: 10.1007/BF02520327.

Clock rate, when compared to coordinate time, depends on the velocity of the clock and on the space-time metric

Accuracy of optical clocks starts to be competitive with classical methods: up to a few centimeters for the static

Possibilities for technical realisation of a system for measuring potential differences over intercontinental distances

Courtesy Pacome Delva

Clock performances

 Observatoire
 SYRTE

Systèmes de Référence Temps-Espace

Local clock comparison

- Starting at data point 14, one of the clock is elevated by 33 cm.
- The net relative shift is measured to be $(41 \pm 16) \times 10^{-18}$.

Systèmes de Référence Temps-Espace

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Experimental demonstration of the dependency of clock frequency with local height with two Al+ optical clocks

I.Chou et al., Science 329, 5 (2010)

Means to compare/disseminate clocks at long range

(cf. Belville and *The Greenwich time lady*)

Systèmes de Référence Temps-Espace

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Delay under control...

Time transfer = mastering delays Instrumental delays Propagation delays Other... (Sagnac effect)

Measuring the propagation delay :

- Propagation model Remote measure + Celerity of the waves Spatial coordinates
 - path reciprocity Local measure +

Transportable clock Cs: $10^{-13}(1s)$, $4x10^{-16}(1d)$ Sr : 10⁻¹⁵(1s), 10⁻¹⁷(3h)

Principles of operation of fiber links

Fiber links : seminal works (Primas et al., 1988)

SYSTEM*

Lori E. Primas George F. Lutes Richard L. Sydnor Jet Propulsion Laboratory Pasadena, California 91109

Classes of fiber links

- Two-way : Stabilized / Post-processed
 - Post-processed techniques used for comparison purposes
- One way: Unstabilized (affects stability and accuracy)

- Bi-directional or uni-directional (affects noise) correlations)
- Analog or digital (affect the scalability)

Principles of operation of fiber links

Fiber links : seminal works (Primas et al., 1988)

SYSTEM*

Lori E. Primas George F. Lutes Richard L. Sydnor

Performances of means of comparison

Optical methods

Relativistic Geodesy

RF+time methods

Radio-astronomy VLBI

Space Geodesy

this talk now focus on optical frequency transfer

Systèmes de Référence Temps-Espace

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Courtesy Davide Calonico

Fiber networks

Germany : ~2000 km, UK ~1000 km

Systèmes de Référence Temps-Espace

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

NPL, PTB, SYRTE connected **INRIM** scheduled for 2019

A fiber network of about 6000 km in EU enabling bi-directional, coherent, optical frequency transfer

see also:

Relativistic Geodesy and Gravimetry with Quantum Sensors (geo-Q) https://www.geoq.uni-hannover.de/

Geopotential measurements with linked optical lattice clocks

The first international optical clock comparison

Clock comparisons through a fiber network

~2300 km fiber link

- Sensitivity: \checkmark ($\delta \alpha$, Λ) limited only by clocks: Sr-Sr: $\delta\omega/\omega\sim 3 imes 10^{-17}$ at 1000s
- Long observation time: \checkmark (\mathcal{T})
- Long-term stability: \checkmark (d)

Systèmes de Référence Temps-Espace

Fibre network

- High-accuracy long-distance clock comparisons
- Different clocks: Hg/Sr/Yb⁺

- SYRTESrB-NPLSr
- SYRTESr2-NPLSr
- SYRTEHg-PTBYb
- SYRTEHg-NPLSr
- PTBYb-NPLSr
- PTBSr-NPLYb
- PTBSr-PTBYb

Courtesy Pacome Delva Jérome Lodewyck

Geodesy with a transportable optical clock

A transportable optical clock is moved from Laboratoire Souterrain de Modane (French Alps) to INRIM, and compare to static clocks operated @INRIM through ~150 km fiber link

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Systèmes de Référence Temps-Espace

- Height difference $\sim 1 \text{ km} \Rightarrow$ Gravitational redshift ~ 10^{-13}
- relativistic redshift of 47.92(83) Hz
- gravity potential difference is $10\,034(174)\,\mathrm{m^2s^{-2}}$
- Consistent with geodetic measurements

J.Grotti *et al.*, Nature Physics 1 (2018). doi: 10.1038/s41567-017-0042-3

Chronometric geodesy for high resolution geopotential

(a) Without clock data.

(b) With clock data.

Systèmes de Référence Temps-Espace

- SYRTE/Obs.Paris, LAREG/IGN and LKB collab.
- Goals :
 - evaluating the contribution of optical clocks for the determination of the geopotential at high spatial resolution
 - Find the best locations to put optical clocks to improve the determination of the geopotential
- Adding ~30 clocks are sufficient to obtain centimeterlevel standard deviations and **1-2 order of magnitude** improvements in the bias.
- Clocks can also contribute to the unification of height systems realizations

T. E. Mehlstäubler et al., Atomic clocks for geodesy. Rep. Progress in Physics 81, 064401 (2018).

Submarine links

- Link accuracy limited to ~10⁻¹⁷

oservatoire <u>SYRTE</u>

Systèmes de Référence Temps-Espace

S.-C. Ebenhag, et al. in Proc. 43rd PTTI 431–442 (2011)

Not possible to by-pass uni-directional submarine amplifiers : bi-directional links are probably not doable!

C.Clivati et al., Optica 5, 893 (2018)

CLONETS: towards Research Infrastructures

Fiber links range (km)

CLONETS : a paper study (Coordination and support action)

16 partners from 3 areas

- Work with Network for Education and Research Industry to make the technology available
- Ways to access the network
- Compatibility with TelCo

Surveys and reviews

- 2 surveys, 1 market study : research infrastructures, industry, society...
- Technology reviews
 - T/F service parallel to data traffic
 - Guide for best practice
 - Emerging technologies

Current work

- **Overall vision**
- Strategic roadmaps
- Technology roadmaps

Project CLONETS involved 16 partners from 7 European countries. Partners represent 4 main areas:

- National Measurement Institutes: OBS PARIS (FR), NPL (UK), PTB (DE), INRIM (IT)
- National Research and Education Network: RENATER (FR), CESNET (CZ), PSNC (PL), GARR* (IT).
- Academic Laboratories: AGH (PL), UP13 (FR), UCL (UK), ISI (CZ), CNRS* (FR)
- Industrial: MUQUANS (FR), MENLO (DE), PIKTIME (PL), SEVEN SOL (SP), OPTOKON (CZ), TOP-IX* (IT)

An EU-backbone to be designed

l'Observatoire SYRTE

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Systèmes de Référence Temps-Espace

An EU-backbone to be designed

l'Observatoire SYRTE

Systèmes de Référence Temps-Espace

Outlook

- **REFIMEVE, LIFT**
- Next challenges and open questions:
 - Fiber network as a distributed sensor ?
 - Submarine links for transcontinental comparisons ?
 - Accurate time transfer
- Towards EU research infrastructure, building a clock service

Systèmes de Référence Temps-Espace

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Fiber links : a new technology for T/F transfer, capabilities beyond GNSS solutions : le-15@ls to le-19@lday; Optical metrological networks: https://www.refimeve.fr

Chronometric leveling : proof of concepts, consistent with other methods

https://www.clonets.eu/

Fiber network : application to geodesy Infrastructures for geodesy - Paris, June 7, 2019

Systèmes de Référence Temps-Espace

Thank for your attention !

Special thanks for : Philip Tuckey, PI CLONETS Pacôme Delva (geodesy expert@SYRTE)

collaboration SYRTE-LPL-RENATER : Olivier Lopez, Anne Amy-Klein, Christian Chardonnet (LPL) Emilie Camisard, Nicolas Quintin, Laurent Gydé (RENATER)

